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Abstract
Following a conjecture of Berry and Howls (1994) concerning the geometric
information contained within the high orders of Weyl series, we examine such
series for the average spectral properties of two- and three-dimensional quantum
ball billiards threaded by a single flux line at the centre. We adapt a Mellin-based
scheme of Bordag et al (1996) to generate the Weyl series. It is shown that for a
circular billiard, only a single Weyl series term is changed and thus the flux line
only induces a simple constant shift in the average properties of the spectrum,
although the fluctuations about this average will still be flux dependent. This
implies that the late terms in the expansion are dominated by the diametrical
periodic orbit of the unfluxed circle, rather than the shorter diffractive orbits
encountering both the billiard boundary and the flux line. For a spherical billiard
with flux the late terms suffer modifications which can be linked to diffractive
orbits. The origins of the differences between the structure of the series are
traced to the interaction of the geometry and symmetry breaking.

PACS numbers: 03.65.Sq, 02.40.-k, 05.45.Mt

1. Introduction

The higher orders of large energy expansions of spectral functions have been the subject of
some recent study. Various approaches have been taken towards different goals.

A sequence of papers starting with the theory of Bordag et al (1996a) provided technically
detailed methods for generating the terms in the asymptotic expansion of spectral functions
of systems with known circular or spherically symmetric eigenfunctions. The method is
based on a careful analytic continuation of an integral representation of spectral zeta functions
leading to residue calculation of asymptotic expansions. Applications and extensions have
involved the variation of boundary conditions (Dowker 1996, Dowker et al 1996, Bordag and
Vassilevic 1999), the use on different metrics (Dowker and Kirsten 2001) and the calculation
of Casimir energies (Bordag et al 1997, Elizalde et al 1998). Levitin (1998) derived a method
which generates the heat invariants of Euclidean balls in arbitrary dimensions. Others have
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considered the effect of uniform magnetic fields on the asymptotics of the heat kernel (Narevich
et al 1998, Spehner et al 1998, Narevich and Spehner 1999).

Much of the above work has been concerned with the derivation of the coefficients per
se. Another vein has considered the ‘asymptotics of the asymptotics’ and has sought to
determine whether global properties of the classical system are reflected within the higher
order coefficients, mirroring the geometric information (area, perimeter, connectivity etc)
contained in the first few terms (Kac 1966). Berry and Howls (1994) (hereafter called BH)
conjectured that the higher order terms of the Weyl series expansion for the resolvent of 2D
quantum billiards obeying Helmholtz’ equation with Dirichlet boundary data

g(s) = lim
N→∞

[
N∑
n=1

1

En + s2
− A

4π
log

(
En

s2

)]
(1)

(and by appropriate integral transformation, for other spectral functions) behaved as a factorial
over a power of a periodic orbit associated with the dynamics of the corresponding classical
system. This conjecture was examined subsequently for billiards with corners (Howls and
Trasler 1998) and in different dimensions (Howls and Trasler 1999) (hereafter called HT)
where systematic corrections to this asymptotic behaviour were conjectured:

g(s) ∼
∞∑
r=1

cr

sr
cr ∼

∑
lp.o.

∞∑
p=0

ar,p,p.o.
�(r − p + µp)

l
r−p+µp
p.o.

(2)

where lp.o. are associated periodic orbits of the classical system. These orbits may be periodic
orbits of the system in question, or of one related by symmetry (BH). Variation of boundary
data was also considered by Trasler (1998). The conclusion of these works was that it is not
always the shortest periodic orbit that dominates the late term behaviour and that the presence
of corners, holes and the dimensionality of the billiard can all affect the result.

In this paper we combine the above strands to investigate the high orders in the Weyl
expansion of two Aharonov–Bohm billiards (Aharonov and Bohm 1959). These are billiard
systems (Berry and Robnik 1986) where a point particle of massm and charge q encounters a
magnetic vector potential A so that the quantum eigenfunctionsψ and eigenenergiesE satisfy
the modified equation

1

2m
(−ih̄∇ − qA)2ψ = Eψ (3)

with Dirichlet boundary conditions. The magnetic vector potential A is any function that gives
rise to a flux

B ≡ ∇ × A = 2πδ(r − r0). (4)

In what follows we shall use α to denote the scaled flux

α ≡ q�/h � =
∮

r0

A · dr. (5)

There are several reasons for studying this type of system. First, Berry (1986) derived the flux
correction to c2 of the spectral counting function for arbitrary 2D billiards using the free Green
function

c2 = 1

6
− α(1 − α)

2
. (6)

A justification of his calculation for the resolvent of general smooth billiards inD = 2 appears
in appendix A. Here we seek to study the effect of the boundary on the higher order cr(r > 2)
in the Weyl series, both in D = 2 and 3. Secondly, the flux line introduces diffractive
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orbit contributions to the oscillatory fluctuations in the semiclassical trace formula (Sieber
1999, Riemann et al 1996). The classical actions of periodic orbits enclosing the flux line
acquire an additional flux-dependent term (although their spatial length remains unchanged).
We seek to determine the influences of these additional geometric properties (if any) on the
asymptotic form of the high orders. Thirdly, the classical dynamics of the fluxed system are still
underpinned by periodic orbits but the time-reversal and spatial symmetries are broken by the
flux-line. We seek to discover if the resurgence properties of the modified Weyl series can be
seen to generate the symmetry-breaking prefactors of the periodic orbit fluctuations (Reimann
et al 1996, Tanaka et al 1996, Sieber 1999). In addition the Aharonov–Bohm billiards provide
a test of the late-term conjecture of BH for a more general quantum operator.

We choose to study two systems. The first is a D = 2 circular billiard with a flux line at
the origin and Dirichlet boundary conditions, which breaks the time reversal symmetry. For
the other we thread a flux line between the geographical poles in the interior of a D = 3
ball of radius R and apply Dirichlet conditions on the (inner) surface. This breaks the SO(3)
symmetry of the spherical billiard reducing it to a U(1) axial symmetry. Physically both
systems acquire diffractive orbits which scatter from the flux line and bounce on the boundary.
The contributions of these orbits to the oscillatory corrections to the Weyl series of the fluxed
circle have been studied by Reimann et al (1996) and Sieber (1999). The circle and sphere
have been chosen for their simplicity, but also to test how the symmetry breaking interacts
with the dimensional differences observed in HT, whereby the Weyl series of odd-dimensional
balls are dominated by the triangular orbits, rather than the shorter diametrical orbits observed
in even dimensions.

Note that the statistical distribution of the eigenvalues of more general 2D flux-dependent
billiards have been discussed previously (Berry and Robnik 1986). The symmetry-breaking
effect of a uniform magnetic field on a spherical quantum billiard has been discussed by Tanaka
et al (1996) in the context of electronic ‘supershells’ for metallic clusters. The superposition
of an Aharonov–Bohm solenoid on a magnetic monopole at the origin in a spherical polar
geometry has been studied by Yeo and Moore (1998) as a model of a thin film superconductor.

It is possible to use the Green function techniques of BH and HT to generate the Weyl
series for the fluxed billiards. However, each term in the Weyl series is generated from a process
requiring several levels of formal expansions (cf HT), complicated further by flux-dependent
oscillatory contributions that nevertheless sum conditionally to algebraic orders. To avoid such
complications, we generalise a method due to Bordag, Elizalde and Kirsten (1996), hereafter
called BEK. This approach seeks to analytically continue zeta function representations to
the negative axis before relating them to the Weyl coefficients and is explained in sections 2
and 3. The method is valid for radially and spherically symmetric systems where the radial
eigenfunctions are Bessel functions. We generalise the method to allow flux contributions in
theD = 2 circle in section 4. Section 5 deals with the fluxedD = 3 ball. The Green function
approach can be used to check and explain the asymptotic behaviour of the BEK results and
the implications and this is discussed in section 6.

2. Zeta functions and Weyl series

We recall here how to calculate the Weyl series coefficients of the resolvent from the analytic
continuation of associated spectral zeta functions (Voros 1992). Our starting point is the heat
kernel of the spectrum defined by

θ(t) =
∑
n

e−tEn (7)
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with the ansatz that, for the D-dimensional smooth systems considered here,

θ(t) ∼
∞∑
r=0

ar t
(r−D)/2 t → 0+. (8)

The zeta function

ζ(p) =
∑
n

E−p
n (9)

is then related to the heat kernel by the Mellin transform

ζ(p) = 1

�(p)

∫ ∞

0
dt tp−1θ(t) Re (p) > −D/2. (10)

Inserting (8) into (10) and separating the integration range into [0, 1] and [1,∞) we obtain

ζ(p) ∼ 1

�(p)

{ ∞∑
r=0

ar

p + (r −D)/2
+ h(p)

}
(11)

where h(p) is analytic in p (due to the exponential convergence of θ(t) for large t). It then
follows that the ar are given by Lesduarte and Romeo (1994):

ar = �

(
D − r

2

)
Res

{
ζ(p), p = D − r

2

}
0 � r � D − 1

a2m+D = (−1)mζ(−m)/m! m ∈ N
a2m+1+D = �(−m− 1

2 )Res{ζ(p), p = −m− 1
2 } m ∈ N.

(12)

Finally to tie in with the Weyl coefficients of the resolvent function dealt with in BH, HT (up
to a shift in index) we note the formal relationship between the regularized resolvent g(s) and
the heat kernel (BH equation (20)),

g(s) =
∫ ∞

0
dt e−s2t

{
θ(t)−

D−2∑
r=0

ar t
(r−D)/2

}
∼

∞∑
r=D−1

cr

sr−D+2
. (13)

The Weyl terms of the regularized resolvent are thus

cr = �

(
r −D

2
+ 1

)
ar r � D − 1 (14)

which in turn can be determined from (12) as

cD−1 = πRes{ζ(p), p = 1
2 }

c2m+D = (−1)mζ(−m) m ∈ N
c2m+1+D = π(−1)m+1Res{ζ(p), p = −m− 1

2 } m ∈ N.
(15)

(Note that in reference HT the c-coefficient indices r ran from 1 whereas here they start at
D − 1, so that cHT

1 = cHere
D−1.)

Thus we need to continue analytically the zeta function to the negative real axis, to calculate
the Weyl series. The method of BEK achieves this, with some technical differences induced
by the flux line. For that reason we now briefly sketch the unfluxed method.

3. The method of Bordag et al

The starting point is the Dirichlet representation of a (mass M particle) zeta function

ζ(p) =
∞∑
n=0

∞∑
l=0

dl

(Enl +M2)p
(16)
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where dl is degeneracy of the eigenvalues Enl . For any system with spherical symmetry such
that the radial eigenvalues are Bessel functions, this sum can be represented as an integral

ζ(p) =
∞∑
l=0

dl

2π i

∫
γ

dk

(k2 +M2)p

∂

∂k
{log Jν(l)(kR)} (17)

where ν(l) labels the eigenmodes and the contour γ is a clockwise-oriented curve enclosing
all real-k solutions of

Jν(kR) = 0. (18)

The representation (17) is only valid for a range of Re (p) > 0. We seek to continue it
analytically to Re (p) < 0. The method outlined below is valid for general ν and, as we shall
show, can be adapted to ourD = 2 example by setting ν = l + α and l + 1 − α with dl = 1∀l.
For the D = 3 spherical AB billiard, we shall have to modify this algorithm slightly.

First we focus on an unfluxed sphere. We insert an inert k−ν into the derivative of (17) to
prevent contributions from the origin, and deform the integration contour to the imaginary k
axis:

ζν ≡
∫
γ

dk

(k2 +M2)p

∂

∂k
{k−ν log Jν(kR)}

= sin πp

π

∫ ∞

M

dk

(s2 −M2)p

∂

∂s
{log Iν(sR)} k = is. (19)

The modified Bessel function is then expanded as

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)1/4

∞∑
r=0

ur

νr
(20)

where

η =
√

1 + z2 + log
[
z
/(

1 +
√

1 + z2
)]

t = 1
/√

1 + z2

ur+1(t) = 1
2 t

2(1 − t2) u′
r (t) + 1

8

∫ t

0
d τ(1 − 5τ 2) ur(τ ) u0(t) = 1.

(21)

Then we define formally the expansion

log

[ ∞∑
r=0

ur(t)

νr

]
∼

∞∑
n=1

Dn(t)

νn
. (22)

By simultaneously subtracting and adding N terms of this asymptotic expansion for ν → ∞
we can derive an expression for ζν valid on the strip (1 −N)/2 < Re (p) < 1. The result is

ζν = Zν(N) +
N∑

j=−1

Aνj (p)

Aν−1 = sin πp

π

∫ ∞

MR/ν

dz

[(zν
R

)2
−M2

]−p
∂

∂z
log(z−νeνη)

Aν0 = sin πp

π

∫ ∞

MR/ν

dz

[(zν
R

)2
−M2

]−p
∂

∂z
log(1 + z2)−1/4

Aνj = sin πp

π

∫ ∞

MR/ν

dz

[(zν
R

)2
−M2

]−p
∂

∂z

(
Dj(t)

νj

)
(23)

where Zν(N) is both analytic on the strip (1 − N)/2 < Re (p) < 1 and is zero for negative
integer p: it therefore plays no role in calculating the cn (cf (15)) and we focus henceforth on
the A-coefficients.
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BEK recognize the A-coefficients as 2F1 hypergeometric functions. Representing these
using Mellin–Barnes integrals it is possible to exchange the degeneracy sum and integral after
a careful consideration of the contour.

After a somewhat lengthy calculation, the contribution of the A-coefficients to the full,
zeta function can be recast as

Aj(p) =
∞∑
l=0

dlA
ν(l)
j (24)

where

A−1(p) = R2p

2
√
π�(p)

∞∑
j=0

(−1)j

j !
(MR)2j

�(j + p − 1/2)

p + j
ζH(2j + 2p − 2; 1/2)

A0(p) = − R2p

2�(p)

∞∑
j=0

(−1)j

j !
(MR)2j�(j + p)ζH(2j + 2p − 1; 1/2)

Ai(p) = − R2p

�(p)

∞∑
j=0

(−1)j

j !
(MR)2j ζH(2 − 1 + i + 2j + 2p; 1/2)

×
i∑

a=0

xi,a
(i + 2a)�(p + a + j + i/2)

�(1 + a + i/2)
.

(25)

Here ζH denotes a Hurwitz zeta function defined by

ζH(p; q) =
∞∑
l=0

(l + q)−p Re (p) > 1 (26)

and the xi,a are the coefficients of t in the Bessel-expansion polynomials (22):

Di(t) =
i∑

a=0

xi,at
i+2a. (27)

The xi,a satisfy the recurrence relation given in appendix A of BEK (up to an overall
multiplicative factor of −1 in the first equation). Note that for the unfluxed ball inD = 3, the
degeneracy factor is dl = 2l + 1,∀n. As the mass M contributes only an overall exp(−M2t)

prefactor to the heat kernel we may now setM = 0 without loss of generality, simplifying the
subsequent analysis.

From (15) we require the zeta function at p = −m and p = −m− 1/2. We can now fix
the upper limitN of the subtracted sum in (25) so as to ensure that Zν(N) does not contribute.
From the condition just below (23), we find that

N >

{
2m + 2 p = −m− 1/2

2m + 1 p = −m ⇒ N =
{

2m + 3 p = −m− 1/2

2m + 2 p = −m.
(28)

We can thus represent the zeta functions as (cf (15))

ζ(−m) =
2m+2∑
l=−1

Al(−m)

Res{ζ(p), p = −1/2 −m} =
2m+3∑
l=−1

Res{Al(p), p = −1/2 −m}.
(29)
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Hence from (15), (2), (19), (23), (25) and (29) we find that

cD−1 = πRes{ζ(p), p = 1
2 }

c2m+D = (−1)m
2m+1∑
l=−1

Al(−m) m ∈ N

c2m+1+D = π(−1)m+1
2m+2∑
l=−1

Res{Al(p), p = −1/2 −m} m ∈ N.

(30)

We are now in a position to examine how these coefficients are modified by the inclusion of
flux.

4. D = 2

We consider a circular 2D billiard of radius R with Dirichlet boundary conditions and a single
flux-line of strength α at the origin. The fluxed system still possesses axial spatial symmetry,
but the time reversal symmetry is broken. The radial eigenfunctions are now non-integer-order
Bessel functions

ψnm(r) = NnmJ|n−α|(j|n−α|r)eimφ − ∞ < n < +∞ m � 1. (31)

The degeneracies of the eigenvalues Enp = j 2
|n−α|,p are also broken. We therefore adapt the

BEK scheme by splitting the total zeta function into a sum of zeta functions each of non-
degenerate eigenvalues. Assuming the BEK notation (19), we have for 0 � α � 1/2,

ζ Total
D=2 (p) = ζ|α|(p) +

∞∑
l=1

{ζl−α(p) + ζl+α(p)}

=
∞∑
l=0

{ζl+1−α(p) + ζl+α(p)}

=
∞∑
l=0

{ζl+1/2+(1/2−α)(p) + ζl+1/2−(1/2−α)(p)}. (32)

The last line demonstrates that ζ Total
D=2 (p) is symmetric in (1/2 −α). We can therefore calculate

theD = 2 fluxed zeta function by summing non-degenerate BEK zeta contributions (17) with
ν = l + 1 − α and ν = l + α.

A careful study of the BEK method reveals that when allowing for the change in
degeneracies the only effect is to modify the summed A-coefficients (25) as follows. In
the case of a D = 3 unfluxed ball the degeneracy is 2l + 1. The result of pulling back the
Mellin contour to the left and subsequent sum is the appearance of Hurwitz zeta functions (cf
BEK (3.15)–(3.18))

∞∑
l=0

(2l + 1)(l + 1/2)−(x+1) = 2
∞∑
l=0

(l + 1/2)−x = ζH(x; 1/2) x > 1. (33)

Here x denotes a generic exponent (Re x > 1). For the fluxed circle the non-degenerate zeta
functions now involve the sums

ν = l + 1 − α :
∞∑
l=0

(l + 1 − α)−(x+1) = ζH(x + 1; 1 − α) x > 1

ν = l + α :
∞∑
l=0

(l + α)−(x+1) = ζH(x + 1;α) x > 1

(34)
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where the x take the same values as in the unfluxed sphere calculation. Thus theA-coefficients
can be transposed from the unfluxed sphere calculation to the fluxed circle case by the
substitution

ν = l + 1 − α : ζH(x; 1/2) → 1
2ζH(x + 1; 1 − α)

ν = α : ζH(x; 1/2) → 1
2ζH(x + 1;α). (35)

Summing the two non-degenerate contributions we therefore arrive at the following
expressions:

A−1(p) = R2p

4
√
π

�(p − 1/2)

�(p + 1)
{ζH(2p − 1; 1 − α) + ζH(2p − 1;α)}

A0(p) = −R
2p

4
{ζH(2p; 1 − α) + ζH(2p;α)}

Ai(p) = − R2p

�(p)
{ζH(2p + j ; 1 − α) + ζH(2p + j ;α)}

j∑
a=0

xj,a
(j + 2a)�(p + a + j/2)

�(1 + a + j/2)
.

(36)

From the general result (30), the Weyl coefficients are then

c2m+2 = (−1)m
2m+2∑
l=−1

Al(−m) m ∈ N

c2m+3 = π(−1)m+1
2m+3∑
l=−1

Res{Al(p), p = −1/2 −m} m ∈ N.
(37)

We thus require the residues of theA-coefficients atp = 1−n/2 (n = 0, 1) andp = −m−1/2
and their values atp = −m (m positive integers). For this we use the fact that the continuations
of the Hurwitz zeta functions of order −n (n positive integer) can be represented as Bernoulli
polynomials:

ζH(−n; q) = −Bn+1(q)/(n + 1). (38)

After a tedious calculation, many cancellations take place due to the symmetries of the
arguments of the ζH in the A-coefficients (36) and the corresponding properties of Bernoulli
polynomials (Gradshteyn and Ryzhik 1994)

Bn(α) + Bn(1 − α) = (1 + (−1)n)Bn(α) =
{

2Bn(α) n even

0 n odd.
(39)

We find that the only non-zero terms are

Res{A0, p = −1/2 −m} = −R
−1−2m

4
δm,−1 (40)

where δ denotes the Kronecker delta and

Res{A2m+2, p = −1/2 −m} = − R−1−2m

�(−1/2 −m)

2m+2∑
a=0

x2m+2,a
�(a + 1/2)

�(a +m + 1)
m � 0 (41)

A−1(−m) = −δm,0�(−1/2)

8
√
π

{B2(1 − α) + B2(α)} =
{

1

12
− α(1 − α)

2

}
δm,0 (42)

A2m+1(−m) = (−1)m+1m!R−2m
2m+1∑
a=0

x2m+1,a�(a + 1/2)

�(m + a + 1/2)
m � 0. (43)

Taking account of the vanishing values the formulae for the Weyl coefficients (37) become

c2m+2 = (−1)mA2m+1(−m)
c2m+3 = π(−1)m+1Res{A2m+2(p), p = −m− 1/2}. (44)



Weyl series for Aharonov–Bohm billiards 7819

On inserting the non-zero values above, we obtain the apparently novel (cf BH table 1) and
remarkably compact expressions

c2 =
1∑
l=0

A2l−1(0) = 1

6
− α(1 − α)

2

cr = −R2−r
r−1∑
a=0

xr−1,a�(a + 1/2)�(r/2)

�(a + r/2 − 1/2)
r � 3.

(45)

Clearly c2 agrees (as it should) with Berry’s result (6). However, from (27) the Bessel expansion
coefficients xr,k are independent of the flux α. Consequently the higher orders (r > 3) of the
circular Weyl series are completely ignorant of the flux-line. Expression (45) for r > 3 is
identical to the unfluxed case and so generates the coefficients found in table 1 of BH. We can
therefore deduce that the higher orders of the 2D fluxed case behaves as (BH section 3)

cr ∼ 1

2
√

2π

�(r − 1/2)

4r
r → ∞. (46)

Note that the l = 4 orbit that dominates here is not a twice-traversed radial diffractive orbit.
This can be deduced from the constant shift term in the gamma function. From BH (4)–(7)
we see that this constant is associated with the algebraic prefactor of the associated periodic
orbit correction. A diffractive orbit’s algebraic prefactor in the periodic orbit fluctuations is
one half power down on a corresponding periodic orbit (Sieber (1999), equation (44)). Since
the shift in (46) is the same as the unfluxed case, the l = 4 contribution is thus the classically
forbidden diametrical periodic orbit of the unfluxed case.

The Weyl series is therefore almost totally insensitive to the periodic orbit arising from
the diffractive flux line. This is somewhat surprising since the actions of all polygonal orbits
encircling the flux line µ times acquire integer multiples of the Aharonov–Bohm flux.

sl → sl ± 2π iµα. (47)

We postpone a discussion of this case until after the next section.

5. D = 3

For D = 3 we thread the flux line between the (geographical) poles in the interior of the ball
of radius R and apply Dirichlet conditions on the (inner) surface. This converts the SO(3)
symmetry of the spherical billiard into a U(1) axial symmetry.

The eigenvalues of the system considered here are (Elizalde et al 1993)

En,m,r = j 2
|m−α|+n+1/2,r m, r ∈ Z n ∈ N

J|m−α|+n+1/2(j|m−α|+n+1/2,rR) = 0.
(48)

Using equation (30) the Weyl series in D = 3 is given by

c2 = πRes{ζ(p), p = 1/2}
c2m+3 = (−1)mζ(−m) m � 0
c2m+4 = π(−1)m+1Res{ζ(p), p = −m− 1/2} m � 0.

(49)

Again the flux splits the degeneracies and so the zeta function we wish to analytically continue
is given by (19), (48) as

ζ Total
D=3 (p) =

∞∑
n=0

+∞∑
m=−∞

1

2π i

∫
γ

dk (k2 +M2)−p
∂

∂k
ln{J|m−α|+n+1/2(kR)}. (50)
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The main difference between the unfluxed sphere in BEK and here is the form of the double
sum in (50), cf (17). Both calculations are similar until the step (24), (25). The unfluxed case
encounters sums in the A-coefficients (25) which can be represented as simple Hurwitz zeta
functions (26). In the fluxed case these sums are more complicated, but can be cast in the form

f (p, α) ≡
+∞∑

m=−∞

+∞∑
n=0

1

(|m− α| + n + 1/2)p
Re (p) > 1. (51)

A careful partitioning of the sums allows us to evaluate these as

f (p, α) = ζH(p − 1; 1/2 − α)− (1/2 − α)ζH(p; 1/2 − α)

+ζH(p − 1; 1/2 + α) + (1/2 − α)ζH(p; 1/2 + α). (52)

Note that when α = 0 we have f (p, 0) = 2ζH(p − 1; 1/2), in accordance with the unfluxed
degenerate formulae of BEK. We can thus read off theA-coefficients from the unfluxedD = 3
case by replacing each of the Hurwitz zeta functions in BEK according to the rule

ζH(x, 1/2)|BEK → 1
2

{
ζH(x, 1/2 − α)− (1/2 − α)ζH(x + 1, 1/2 − α)

+ζH(x, 1/2 + α) + (1/2 − α)ζH(x + 1, 1/2 + α)

}
= 1

2f (x + 1, α).

(53)

In the analytic continuation of the zeta functions to the negative axis we observe the following
simplifications for m zero or a positive integer (cf (38)) (Gradshteyn and Ryzhik 1994)

f (−2m,α) = 0

f (−2m + 1, α) = −B2m+2(1/2 − α)

2m + 2
+ (1/2 − α)

B2m+1(1/2 − α)

2m + 1
.

(54)

The necessary values and residues can then be found. We omit the tedious details and state
only the non-zero results:

A0(−m) = −R
−2m

2
f (−1 − 2m,α) (55)

A2m+2(−m) = (−1)m+1R−2mm!
2m+2∑
a=0

x2m+2,a�(1 + a)

�(a +m + 1)
(56)

A2n(−m) = −2R−2mm!f (−1 + 2n− 2m,α)
2n∑
a=0

x2n,a(−1)a+n

�(a + n)(m− a − n)!
m > 3n (57)

A2n(−m) = −2R−2mm!f (−1 + 2n− 2m,α)
m−n∑
a=0

x2n,a(−1)a+n

�(a + n)(m− a − n)!
3n � m � n.

(58)

The non-zero residues are then,

Res{A−1(p);p = −1/2 −m} = R−1−2m(−1)m+1f (−3 − 2m,α)

2
√
π�(1/2 −m)(m + 1)!

(59)

Res{A2m+3(p);p = −1/2 −m} = − R−1−2m

�(−1/2 −m)

2m+3∑
a=0

x2m+3,a�(1 + a)

�(a +m + 3/2)
(60)

Res{A2n−1(p);p = −1/2 −m} = 2(−1)mR−1−2m

�(−1/2 −m)
f (−3 + 2n− 2m,α)

×
2n−1∑
a=0

x2n−1,a(−1)a+n

�(a + n− 1/2)(m− a − n + 1)!
m � 3n− 1 (61)
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Table 1. Terms in the Weyl series of the fluxed 3D ball, expressed in terms of the flux parameter α.

c3 = − 1

48
+
α

4
− α2

4

c4R = − 1

315
+
α

12
− α2

24
− α3

12
+
α4

24

c5R
2 = − 1

960
+
α

12
− α2

24
− α3

12
+
α4

24

c6R
3 = − 2

3003
+

2α

15
− 7α2

120
− 7α3

48
+
α4

16
+
α5

80
− α6

240

c7R
4 = − 47

80 640
+

17α

60
− 13α2

120
− α3

3
+
α4

8
+
α5

20
− α6

60

c8R
5 = − 3169

4849 845
+

125α

168
− 167α2

672
− 89α3

96
+

39α4

128
+

3α5

16
− 11α6

192
− α7

224
+
α8

896

c9R
6 = − 521

593 160
+

487α

210
− 571α2

840
− 145α3

48
+

7α4

8
+

59α5

80
− 49α6

240
− α7

28
+
α8

112

c10R
7 = − 198 641

143 416 845
+

1003α

120
− 1039α2

480
− 6491α3

576
+

3335α4

1152
+

12 019α5

3840
− 1001α6

1280

− 85α7

384
+

5α8

96
+

5α9

2304
− α10

2304

Res{A2n−1(p);p = −1/2 −m} = 2(−1)mR−1−2m

�(−1/2 −m)
f (−3 + 2n− 2m,α)

×
m−n+1∑
a=0

x2n−1,a(−1)a+n

�(a + n− 1/2)(m− a − n + 1)!
3n− 2 � m � n− 1. (62)

Inserting these expressions into (30) we calculate the coefficients as

c2m+3 = (−1)m
m+1∑
n=0

A2n(−m) m � 0

c2m+4 = (−1)m+1π

m+2∑
n=0

Res{A2n−1, p = −m− 1/2} m � 0.

(63)

The Weyl series can then be calculated from (54)–(63) using a symbolic algebra package.
We first choose to expand the cr in terms of the flux parameter α. The results are displayed

in table 1. In contrast toD = 2 we find that the flux does alter all the cr , r > 2 inD = 3. The
general form of the polynomials are

c2m+3 =
m+1∑
p=0

c2m+3,2p
α2p

R2m

c2m+4 =
m+2∑
p=0

c2m+4,2p
α2p

R2m+1
.

(64)

By comparison with the first column of table 1 HT, and allowing for the notational shift in
index clearly when α = 0 we recover the unfluxedD = 3 ball results. We assume the form of
the unfluxed ball (noting the shift in r-index between HT and here)

cr = A0
�(r − 1/2)

lr
(1 + o(1)) (65)

and seek to estimate l, the dominating periodic orbit length in (2), for α � 1. In figure 1 we
plot log |cr/�(r − 1/2)| against r for different values of α. It is clear that the cr exhibit a
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slope = -log (3√3) Figure 1. Plot of log |cr/�(r−1/2)| against
index r to estimate the dominant length l in
the conjecture (65) as a function of the flux
parameter α for the D = 3 ball.

transitional behaviour. For very small values of α the lower cr are apparently dominated by
the unfluxed result with l = 3

√
3, but the eventual dominant behaviour is l = 2, the latter

being the diffractive orbit encountering the flux line. As α increases the l = 2 orbit rapidly
asserts itself as the α-dependent terms dominate the constant, until by α ∼ 0.1 the influence
of the l = 3

√
3 orbit is subdominant at this level of approximation. This is consistent with

the conjectured form of the coefficient asymptotics (2), with the cr undergoing an exchange
of dominance between the l = 3

√
3 and 2 case as r and α vary.

To establish the form of the coefficients when the l = 2 dominates, we assume a form
based on the evidence of figure 1

cr = (r + γ )!

lr

{
a0(α) + O

(
1

r

)}
(66)

where γ is a constant, independent of α. (Note the contributions from other periodic
orbits lp.o. > l to (66) will be O(exp{−r log(l/ lp.o.)}) and so are negligible at this level of

Table 2. Terms in the Weyl series of the fluxed 3D ball, expressed in terms of the shifted flux
parameter β = α − 1/2.

c3 = 1

24
− β2

4

c4R = 817

40 320
− 5β2

48
+
β4

24

c5R
2 = 43

1920
− 5β2

48
+
β4

24

c6R
3 = 115 069

3075 072
− 659β2

3840
+

5β4

64
− β6

240

c7R
4 = 821

10 080
− 359β2

960
+

3β4

16
− β6

60

c8R
5 = 34 538 601 043

158 919 720 960
− 43 175β2

43 008
+

557β4

1024
− 25β6

384
+
β8

896

c9R
6 = 3242 537

4730 880
− 42 841β2

13 440
+

235β4

128
− 4β6

15
+
β8

112

c10R
7 = 93 726 624 813 901

37 595 865 415 680
− 11 470 547β2

983 040
+

520 061β4

73 728
− 12 033β6

10 240
+

175β8

3072
− β10

2304
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ball.

approximation.) The value of γ can be found (HT 32) by considering the combination

τ(r) ≡ crcr−2

c2
r−1

∼ r + γ

r + γ − 1
⇒ γ = τ

τ − 1
− r + O

(
1

r

)
(67)

and plotting the function −r + τ/(τ − 1) against r . The dominant value of l = 2 can then be
rechecked from a plot of log |cr/(r + γ )!| ∼ r log l − log |a0(α)| using the correct shift in the
gamma function. This is summarized in figures 2 and 3, where we deduce that γ = −3, and
confirm the l = 2 dominance.

The spectral functions of the fluxed case are known to be symmetric about α − 1/2
(modulo 1). In order to check if the cr preserve this symmetry we recast them as functions
of β = α − 1/2. Table 2 confirms that they are indeed all even in β and that they simplify
dramatically. In this representation the polynomials take the form

c2m+3 =
m+1∑
p=0

c2m+3,2p
β2p

R2m

c2m+4 =
m+2∑
p=0

c2m+4,2p
β2p

R2m+1
.

(68)

We can analyse the individual β-dependent coefficients cr,2p by isolating all those associated
with the powers β2p and observing how they behave as a function of r . Again for each cr,2p
we assume that it behaves asymptotically as

cr,2p = (r + γp)!

lrp

{
a0,p +

lpa1,p

(r + γp)
+

l2pa2,p

(r + γp)(r + γp − 1)
+ O

(
1

r3

)}
(69)

and seek to determine the γp and a0,p. The results for different (typical) values of p are shown
in figure 4. They demonstrate that γp = −3 and lp = 2 for allpwith a better rate of asymptotic
agreement with r at smaller values of p.
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Figure 4. Plots of τ/(τ − 1) − r and log |cr,p/(r − 3)!| against index r to estimate the shifts
γp ≈ −3 and dominant lengths lp ≈ 2 in the coefficients of the β-powers in the conjectured late
term behaviour (69) for the D = 3 ball for different values of the power.

Given these results and the form (69), we can use a Neville table algorithm (HT appendix C)
to deduce the value of a0,2p. Specifically, if

cr,2p = (r − 3)!

2r−2

{
a0,2p +

2a1,2p

(r − 3)
+ O

(
1

r2

)}
(70)

then if we define

Sr,2p,1 = 2r−2cr,2p

(r − 3)!

Sr,2p,k = 1

(k − 1)
{(r − k + 1)Sr,2p,k−1 − (r − 2k + 2)Sr−1,2p,k−1}

(71)
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Table 3. Scaled Neville table calculations of the terms within the coefficients of the Weyl series of
the fluxed 3D ball, arranged in terms of powers of the shifted flux parameter, β2p for a large value
of r = 35. The higher iterations k in the table demonstrate convergence towards the estimate (73),
with better convergence at low p.

(−iπ)−2p2π(2p)!Sr,2p,k p = 0 p = 1 p = 2 p = 3 p = 7

k = 1 0.954 083 0.942 343 0.884 086 0.784 588 0.250 717
k = 5 0.999 963 0.999 954 0.999 908 0.999 832 1.000 2
k = 10 0.999 998 0.999 992 0.999 953 0.999 811 0.993 737
k = 15 1.000 01 1.000 03 1.000 00 1.000 18 1.012 59

we have

Sr,2p,k = a0,2p + O

(
1

rk

)
. (72)

It is possible to derive higher order approximations to a1,2p, but here we only seek the leading
order behaviour. We have also ignored the contribution of longer periodic orbits to the
form (70), but these will contribute at O(1/2r ).

The results of this algorithm applied, 1, 5, 10 and 15 times for different values of p are
displayed in table 3. By careful analysis for large r it is possible to deduce the trend

Sr,2p,k ∼ (−1)pπ2p

2π(2p)!
k � 1 (73)

with convergence better for lower values p, due to contamination from other periodic orbits
(see HT).

As a consequence we can now assert that the cr,2p take the following form:

cr,2p ∼ (−1)pπ2p

2π(2p)!

(r − 3)!

2r−2
r → ∞ (74)

which suggests by comparison with (68) that

cr ∼ R

2π

�(r − 2)

(2R)r−2

[r/2]∑
p=0

(iπβ)2p

(2p)!
r → ∞ (75)

where [r/2] denotes the integer part of r/2. Given that −1/2 � β � 1/2, the β-dependent
sum can be further approximated as

[r/2]∑
p=0

(iπβ)2p

(2p)!
∼ cos(πβ) = sin(πα) r → ∞ (76)

to generate

cr ∼ R

2π

�(r − 2)

(2R)r−2
sin(πα) r → ∞. (77)

6. Discussion

It is possible to explain why the higher orders of the Weyl series of the circle are oblivious to
the presence of the flux line by the following formal calculation.
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Using the fluxed free Green function (A.1) and the analysis of BH, HT we can derive an
expression for the boundary contributions to the resolvent as

g(s;α) ≡ gtotal(s;α)− gfree(s;α) = − 1
2

+∞∑
m=−∞

f|m−α|(s) (78)

where the f|m−α|(s) is given by

fm(s) =
(

1 +
m2

s2

)
Im(s)Km(s)− I ′

m(s)K
′
m(s)− I ′

m(s)

sIm(s)
. (79)

Note that the flux-altered term c2 (6) is not included in (78) as the free Green function
contribution has already been subtracted out. Using the Poisson sum,

∞∑
m=0

hm±α(s) =
+∞∑

µ=−∞
exp(∓2π iµα)

∫ ∞

0
dmhm(s) exp(2π imµ) (80)

a short calculation results in

g(s;α) = −
∫ ∞

0
dmfm(s)− 2

∞∑
µ=1

cos(2πµα)
∫ ∞

0
dmfm(s) cos(2πmµ)

= g(s; 0)− 4
∞∑
µ=1

sin2(πµα)

∫ ∞

0
dmfm(s) cos(2πmµ). (81)

The additional flux-induced asymptotic contributions therefore arise from the critical points of
the extram-integral for s → ∞. Its existence is entirely due to the symmetry breaking. From
the analysis of BH section 3 or HT section 4 we see that we must take into account the fact that
fm(s) itself undergoes a Stokes phenomenon as the complex energy s is rotated back to the real
energy axis. This gives rise to two types of contributions: those from algebraic terms in the
asymptotic expansion of fm(s) and those from the resurgent exponential behaviour induced
by a Stokes phenomenon (cf BH 60).

The exponential terms generate periodic orbit corrections from the saddle/end-points of
them integral. Except for the diffractive orbit, the lengths of the periodic orbits are identical to
the unfluxed circle, although the actions do acquire the extra Aharonov–Bohm phases which
lead to the sin2 πµα prefactor. When the corresponding contributions from g(s; 0) are added,
the net result is a sequence of periodic orbit corrections, each with the appropriate symmetry-
breaking prefactor, as found in Creagh (1996), Reimann et al (1996), Sieber (1999). The
diffractive orbit arises from the endpoint contribution at m = 0.

The algebraic terms in the expansion of fm(s) result in a sum of Fourier integrals, each
with only a single (real) critical point at m = 0. It is the expansion of each of these integrals
about this endpoint that should lead to the flux contributions to the Weyl series.

Consideration of the form of the integral in (81) shows that the endpoint asymptotic
expansion as s → ∞ about this endpoint is given by equations (20), (26) of HT with ν = 0∫ ∞

0
dmfm(s) cos(2πmµ) = 1

2

∫ ∞

0
dmfm(s)[exp(2πµim) + exp(−2πµim)]

∼
∞∑
r=1

r−1∑
k=0

∞∑
n=1

(−1)n+1

(2πµ)2n
qr,2k

sr+2n

(
d2n−1

dx2n−1

x2k

(1 + x2)3r/2+1/2

)
x=0

(82)

for constants qr,2k . Note that we have used the Debye expansions of the modified Bessel
functions (Abramowitz and Stegun 1972, sections 9.7.7–9.7.10) since the integrals arising
from the corresponding fixed expansions with m bounded, s → ∞ (Abramowitz and Stegun
1972, sections 9.7.1–9.7.4) do not converge over an infinite range.
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It is then clear that the odd derivatives of the even-in-x function in (82) vanish at the origin.
Thus we have, ∫ ∞

0
fm(s) cos(2πmµ) = o(s−r ) ∀r. (83)

Hence we can deduce that it is the asymptotic evenness of the functions fm(s) that result in
the absence of any flux corrections to the Weyl series. This can be traced back to the evenness
in |m− α| of the orders of the Bessel function eigenvalues.

The behaviour when D = 3 can be explained by recourse to the Green function of the
system. Using the eigenfunctions (48) (Elizalde et al 1993) we can derive the Green function
by standard techniques (e.g., Morse and Fesbach 1953) after recasting the generalized flux-
dependent spherical harmonics in terms of Jacobi polynomials. After a detailed and very
lengthy calculation, the resolvent can be expressed using the form (A.8) as

g(s;α) = − 1
2

∞∑
n=0

+∞∑
m=−∞

fn+|m+α|+1/2(s) (84)

which reduces to the unfluxed result of HT (14) when α = 0. The above can be Poisson-
summed to

g(s;α) = −2
+∞∑
µ=0

(−1)µ
{

cos(2πµα)(1 − 1
2δµ,0)

∫ ∞

0
dmmfm(s) cos(2πmµ)

+( 1
2 − α) sin(2πµα)

∫ ∞

0
dmfm(s) sin(2πmµ)

}
(85)

where δµ,0 is the Kronecker delta. Following the procedure of expansion of (82) we could
have used (85) to derive the Weyl series, but as previous stated, this is somewhat cumbersome.
However from (85) we can identify two separate reasons for the presence of flux-dependent
terms in the Weyl series.

First, the extra m in the cosine-dependent integral generates overall an odd integrand
when the algebraic terms in the expansion of fm(s) are integrated. By comparison with (82)
we see that the integrals will no longer then be o(s−r ) and so the α-dependent Weyl series
contributions survive. These contributions persist when α = 0 and so we can trace them to
the interplay of the (odd) dimensionality of the billiard and the symmetry breaking, as noted
in the case of unfluxed balls studied in HT.

The asymptotic contributions, algebraic in s, of the second integral in (85) do not vanish
for α �= 0 due to the (odd-in-m) sine-term in the integrand (cf (82)). These contributions
depend solely on the presence of flux and vanish (smoothly) when α = 0. These contributions
can therefore be attributed entirely to the symmetry breaking.

In order to check the asymptotic behaviour of the D = 3 terms (75), we can evaluate
the contribution of the diffractive orbit from a consideration of the Stokes phenomenon of the
integrands of (85), in the same vein as BH section 3 and HT section 4. This calculation reveals
the asymptotic exponential contributions to be given by

gexp(s;α) ∼ −2
+∞∑

µ=−∞

+∞∑
p=1

ip(−1)µ
{

cos(2πµα)
∫ ∞

0
dmm

√
m2 + s2

s2

× exp(π im[p − 2µ] − pF(s,m))

+i

(
1

2
− α

)
sin(2πµα)

∫ ∞

0
dm

√
m2 + s2

s2
exp(π im[p − 2µ] − pF(s,m))

}
(86)
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where s = i
√
E, Re (E) > 0 and

F(s,m) = 2
√
m2 + s2 + 2m log

{
s

m +
√
m2 + s2

}
. (87)

We recall from BH that after a stationary phase approximation for large s, the summation
indices p, µ respectively translate to the number of bounces on the boundary and the number
of complete circulations of the origin of a classical orbit. Thus, following (Sieber 1999) we
focus on the series of 1 bounce orbits and extract the terms with p = 1. The diffractive
orbits then arise from the stationary phase linear endpoint contributions at the lower limit of
integration

gdiff(s;α) ∼ −2i exp(−2s)
+∞∑

µ=−∞
(−1)µ

{
s cos(2πµα)

∫ ∞

0
dx x exp(sxπ i(1 − 2µ))

+i( 1
2 − α) sin(2πµα)

∫ ∞

0
dx exp(sxπ i(1 − 2µ))

}

∼ − 2i exp(−2s)
+∞∑

µ=−∞
(−1)µ

{
s cos(2πµα)

(
i

sπ(1 − 2µ)

)2

+i

(
1

2
− α

)
sin(2πµα)

(
i

sπ(1 − 2µ)

)}
. (88)

If we now assume that the diffractive orbit does not encircle the flux line, then we must set
µ = 0. This leads to the conclusion that gdiff ∼ 2i exp(−2s)/(sπ2), independent of α. From
this argument we should expect a contribution from a periodic orbit of length 2 to be present
in the orbit correction terms in the unfluxed case. This we know to be false, so the conclusion
is that we must sum over all µ. The diffractive orbits thus consist of a radial segment from the
boundary to the flux line, followed by µ encirclements of infinitesimal radius of the flux line,
followed by a return radial segment to the boundary.

The µ-sums in (88) require the following evaluations (Gradshteyn and Ryzhik 1994)
+∞∑

µ=−∞
(−1)µ

cos(2πµα)

(1 − 2µ)2
= 2 sin(πα)

{ π2α
4 − 1

2 � α � + 1
2

π2(1−α)
4 + 1

2 � α � + 3
2

}

= π2 sin(πα)

2

(
1

2
−

∣∣∣∣α − 1

2

∣∣∣∣
)

0 � α � 1 (89)

(
1

2
− α

) +∞∑
µ=1

(−1)µ
µ sin(2πµα)

µ2 − (1/2)2
=

(
1

2
− α

) { −π
2 sin(πα) − 1

2 � α � + 1
2

π
2 sin(π [1 − α]) + 1

2 � α � + 3
2

}

= −
∣∣∣∣α − 1

2

∣∣∣∣ π2 sin(πα) 0 � α � 1. (90)

Thus we finally deduce that

gdiff(s) ∼ 2
i

s
exp(−2s)

{
sin(πα)

2

[
1

2
−

∣∣∣∣α − 1

2

∣∣∣∣
]

+

∣∣∣∣α − 1

2

∣∣∣∣ sin(πα)

2

}

= i

2s
exp(−2s) sin(πα) (91)

which clearly vanishes at α = 0 (as it should). The sin(πα) term again can be interpreted
as the symmetry-breaking modulation factor (Creagh 1996). It is not unity, as the diffractive
orbit has been interpreted as cycling the flux line µ times. The overall modulation factor is the
sum total of the effect of all −∞ < µ < +∞ cycles via (89)–(91).
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From (13), in D = 3 the tail of the Weyl series takes the form

∞∑
r=N

cr

sr−1
. (92)

Hence, from BH (3) (noting the different power of s in (92)) and BH (7), we observe that an
asymptotic behaviour of

cr ∼ A(α)
(r + β)!

lr
(93)

generates, via a Stokes phenomenon (switching from −1/2 for s negative imaginary to +1/2
s positive imaginary) an exponential of the form

exp(−sl)(sl)β+2iπA(α). (94)

Consequently when (91) and (94) are compared we predict that β = −3, l = 2, and
A = sin(πα)/2π . This agrees with the general approximate form of (77). A more
detailed calculation using the observed polynomial form (76) produces an identical result:
the polynomial in α just leads to additional terms which generate null contributions to the
Stokes phenomenon.

Thus we arrive at the following conclusions. First, in the fluxedD = 2 circle the origin of
the diffractive orbit contributions to the periodic orbit fluctuations is from a Stokes phenomenon
associated with Weyl series (BH section 3), followed by the appropriate saddle/end-point
approximation (BH or HT). However, any trace of this Stokes phenomenon is wiped away by
the corresponding integration of the algebraic terms, since it generates only terms beyond-all-
orders, and thus no extra contribution to the Weyl series. This intricate process can be traced
to the shift in the index of the Bessel functions in the Green function (A.1). This behaviour is
probably therefore peculiar to the circle fluxed at the centre in D = 2.

In theD = 3 ball, the flux-dependent corrections arise from two sources; one an interplay
between the odd-dimensionality and symmetry breaking, the other a term explicitly linked to
the symmetry breaking.

Due to the symmetric nature of the example studied, we expect the results of the circle
to be rather special. However further work on more general shapes in 2D would be required
to confirm this. A study of the effect of uniform magnetic fields might also merit some
investigation to observe if the cyclotron orbits play a role (Tanaka et al 1996).

Appendix

Berry (1986) demonstrated that for a 2D circle with a flux B = 2πδ(r) the leading order
magnetic correction to the spectral counting function arises from the free Green function. It
is thus expected to be universal for all smooth flux-threaded 2D billiards and it suffices to
calculate the correction for the circular billiard. Adopting the complex energy convention of
BH, the unbounded Green function in the presence of a flux line becomes

G
(α �=0)
free (r, r0; s) = 1

2π

+∞∑
m=−∞

I|m−α|(sr<)K|m−α|(sr>) exp{im(θ1 − θ2)} (A.1)

where r< = min(|r|, |r0|), r> = max(|r|, |r0|). We define =gtotal(s;α) as the difference
between the fluxed and unfluxed resolvent

=gtotal(s;α) = =gfree(s;α) +=g(s;α). (A.2)
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Here we have set

=gfree(s;α) ≡ gfree(s;α)− gfree(s; 0) (A.3)

where gfree is the contribution to the resolvent arising from the free Green function (A.1).
In terms of the Green function and the circular billiard we then have

=gfree(s;α) =
∫
B

dr lim
r→r0

[
G
(α �=0)
free (r, r0)−G

(α=0)
free (r, r0)

]
=

∫ 1

0
dr r

+∞∑
m=−∞

[
I|m−α|(sr)K|m−α|(sr)− I|m|(sr)K|m|(sr)

]
. (A.4)

The m-sum can be processed via a Poisson summation

+∞∑
m=−∞

F(m) =
+∞∑

µ=−∞

∫ +∞

−∞
dmF(m) exp(2π iµm) (A.5)

to obtain

=g(s;α) = −8
∫ 1

0
dr r

+∞∑
µ=1

sin2(µπα)

∫ ∞

0
dmIm(sr)Km(sr) cos(2πµm). (A.6)

The r-integral can be found in Howls and Trasler (1998) equation (21), and assuming it can
be performed term-wise, we obtain

=g(s;α) = −4
+∞∑
µ=1

sin2(µπα)

∫ ∞

0
dm

[
fm(s) +

I ′
m(s)

sIm(s)
− |m|
s2

]
cos(2πµm) (A.7)

where

fm(s) =
(

1 +
m2

s2

)
Im(s)Km(s)− I ′

m(s)K
′
m(s)− I ′

m(s)

sIm(s)
. (A.8)

That part of the integrand in (A.7) containing fm(s) can be expected to lead to non-algebraic
terms (see BH section 3) and so does not play a role in the Weyl series. The remainder can be
treated using the results of Howls and Trasler (1998) equations (33)–(35). Asymptotically we
have∫ ∞

0
dm

[
I ′
m(s)

sIm(s)
− |m|
s2

]
cos(2πµm) ∼ 1

s2

∫ ∞

0
dm

[√
m2 + s2 − |m|

]
cos(2πµm)

=
∫ ∞

0
dx

[√
1 + x2 − x

]
cos(2πµsx)

= 1

(2πµs)2
− K1(2πµs)

2πµs
. (A.9)

The K1(2πµs) term is exponentially small and so we are left with the Weyl contribution as

=gWeyl(s;α) = −4
+∞∑
µ=1

sin2(µπα)

(2πµs)2
= −α(1 − α)

2s2
(A.10)

as originally derived by Berry (1986) for the spectral counting function. In our notation, the
fluxed free Green function modifies the coefficient of c2 so that

c
(α �=0)
2 = 1

6
− α(1 − α)

2
. (A.11)



Weyl series for Aharonov–Bohm billiards 7831

References

Aharonov Y and Bohm D 1959 Phys. Rev. 115 485–91
Berry M V 1986 J. Phys. A: Math. Gen. 19 2281–96
Berry M V and Howls C J 1994 Proc. R. Soc. A 447 527–55
Berry M V and Robnik M 1986 J. Phys. A: Math. Gen. 19 649–68
Bordag M, Elizalde E and Kirsten K 1996 J. Math. Phys. 37 895–916
Bordag M and Vassilevic D V 1999 J. Phys. A: Math. Gen. 32 8247–59
Creagh S 1996 Ann. Phys., NY 248 60–94
Dowker J S 1996 Class. Quantum Grav. 13 585–610
Dowker J S, Apps J S and Kirsten K 1996 Class. Quantum Grav. 13 2911–20
Dowker J S and Kirsten K 2001 J. Math. Phys. 42 434–52
Elizalde E, Bordag M and Kirsten K 1998 J. Phys. A: Math. Gen. 31 1743–59
Elizalde E, Lesduarte S and Romeo A 1993 J. Phys. A: Math. Gen. 26 2409–19
Gradshteyn I S and Ryzhik I M 1994 Table of Integrals, Series and Products (New York: Academic)
Howls C J and Trasler S A 1998 J. Phys. A: Math. Gen. 31 1911–28
——1999 J. Phys. A: Math. Gen. 32 1487–1506
Kac M 1966 Am. Math. Month. 73 1–23
Lesduarte S and Romeo A 1994 J. Phys. A: Math. Gen. 27 2483–95
Levitin M 1998 Differ. Geom. Appl. 8 35–46
Morse P M and Fesbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)
Narevich R, Spehner D and Akkermans E 1998 J. Phys. A: Math. Gen. 31 4277–87
Narevich R and Spehner D 1999 J. Phys. A: Math. Gen. 32 L227–30
Reimann S M, Brack M, Magner A G, Blaschke J and Murthy M V N 1996 Phys. Rev. A 53 39–48
Sieber M 1999 Phys. Rev. E 60 3982–91
Spehner D, Narevich R and Akkermans E 1998 J. Phys. A: Math. Gen. 31 6531–45
Tanaka K, Creagh S and Brack M 1996 Phys. Rev. B 53 15050–6058
Trasler S A 1998 High orders of Weyl expansions PhD Thesis Mathematics and Statistics, Brunel University
Voros A 1992 Adv. Studies. Pure Math. 21 327–58
Yeo J and Moore M 1998 Phys. Rev. B 57 10785–9


